

Luma.Emulator

[image: _images/badge.svg]
 [https://github.com/rm-hull/luma.emulator/actions?workflow=luma.emulator][image: _images/badge1.svg]
 [https://coveralls.io/github/rm-hull/luma.emulator?branch=master][image: _images/2020.svg][image: _images/luma.emulator.svg]
 [https://pypi.python.org/pypi/luma.emulator][image: _images/luma.emulator1.svg]
 [https://pypi.python.org/pypi/luma.emulator][image: _images/luma.emulator]
 [https://pypi.python.org/project/luma.emulator]

	Introduction

	Installation
	System packages

	Installing from PyPi

	API Documentation
	luma.emulator.device

	luma.emulator.render

Contributing

Pull requests (code changes / documentation / typos / feature requests / setup)
are gladly accepted. If you are intending to introduce some large-scale
changes, please get in touch first to make sure we’re on the same page: try to
include a docstring for any new method or class, and keep method bodies small,
readable and PEP8-compliant. Add tests and strive to keep the code coverage
levels high.

GitHub

The source code is available to clone at: https://github.com/rm-hull/luma.emulator

Contributors

	Thijs Triemstra (@thijstriemstra)

	Christoph Handel (@fragfutter)

	Boeeerb (@Boeeerb)

	xes (@xes)

	Roger Dahl (@rogerdahl)

	Václav Šmilauer (@eudoxos)

	Claus Bjerre (@bjerrep)

ChangeLog

	Version

	Description

	Date

	1.4.0

	
	Remove Python 3.5 support. Only Python 3.6 or newer is supported.

	2020/12/29

	1.3.0

	
	Remove Python 2.7 support. Only Python 3.5 or newer is supported.

	2020/07/04

	1.2.0

	
	Rework namespace handling for luma sub-projects

	2019/06/16

	1.1.0

	
	Added ASCII-block emulator

	2018/02/03

	1.0.2

	
	Changed version number to inside luma/emulator/__init__.py

	2017/11/23

	1.0.1

	
	Workaround pygame bug & use io module

	2017/11/22

	1.0.0

	
	Stable version

	Minor documentation and setup fixes

	2017/11/03

	0.2.5

	
	Correct noop import

	2017/09/06

	0.2.4

	
	Move show/hide/contrast methods into emulator

	Add segment mapper

	Refactor tests

	2017/04/30

	0.2.3

	
	Added ASCII-art emulator

	2017/04/15

	0.1.3

	
	Add contrast & show/hide functionality to pygame emulator

	2017/03/02

	0.1.2

	
	Restrict exported Python symbols from luma.emulator.device

	2017/03/02

	0.1.1

	
	Split out emulator functionality from rm-hull/luma.core

	2017/02/17

The MIT License (MIT)

Copyright (c) 2017-2020 Richard Hull and contributors

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Introduction

There are various display emulators available for running code against, for debugging
and screen capture functionality:

	The luma.emulator.device.capture device will persist a numbered PNG file to
disk every time its display method is called.

	The luma.emulator.device.gifanim device will record every image when its display
method is called, and on program exit (or Ctrl-C), will assemble the images into an
animated GIF.

	The luma.emulator.device.pygame device uses the pygame library to
render the displayed image to a pygame display surface.

Check out the examples [https://github.com/rm-hull/luma.examples/blob/master/README.rst#emulators]
on how to use the luma.emulator devices.

Installation

Note

The library has been tested against Python 3.6 and newer.

System packages

Install dependencies for pygame first:

$ sudo apt install python3-dev python3-pip build-essential
$ sudo apt install libsdl-dev libportmidi-dev libsdl-ttf2.0-dev libsdl-mixer1.2-dev libsdl-image1.2-dev

And upgrade pip and setuptools:

$ sudo -H pip install --upgrade --ignore-installed pip setuptools

Installing from PyPi

Install the latest version of the luma.emulator library directly from
PyPI [https://pypi.python.org/pypi?:action=display&name=luma.emulator]:

$ sudo -H pip install --upgrade luma.emulator

API Documentation

[image: Inheritance diagram of luma.core.device, luma.emulator, luma.core.mixin, luma.core.virtual, luma.emulator.device]

luma.emulator.device

	
class luma.emulator.device.capture(width=128, height=64, rotate=0, mode='RGB', transform='scale2x', scale=2, file_template='luma_{0:06}.png', **kwargs)

	Bases: luma.emulator.device.emulator

Pseudo-device that acts like a physical display, except that it writes the
image to a numbered PNG file when the display() method is called.
Supports 24-bit color depth.

	
capabilities(width, height, rotate, mode='1')

	Assigns attributes such as width, height, size and
bounding_box correctly oriented from the supplied parameters.

	Parameters

	
	width (int [https://docs.python.org/3/library/functions.html#int]) – The device width.

	height (int [https://docs.python.org/3/library/functions.html#int]) – The device height.

	rotate (int [https://docs.python.org/3/library/functions.html#int]) – An integer value of 0 (default), 1, 2 or 3 only, where 0 is
no rotation, 1 is rotate 90° clockwise, 2 is 180° rotation and 3
represents 270° rotation.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The supported color model, one of "1", "RGB" or
"RGBA" only.

	
cleanup()

	Attempt to switch the device off or put into low power mode (this
helps prolong the life of the device), clear the screen and close
resources associated with the underlying serial interface.

If persist is True, the device will not be switched off.

This is a managed function, which is called when the python processs
is being shutdown, so shouldn’t usually need be called directly in
application code.

	
clear()

	Initializes the device memory with an empty (blank) image.

	
command(*cmd)

	Sends a command or sequence of commands through to the delegated
serial interface.

	
contrast(value)

	Switches the display contrast to the desired level, in the range
0-255. Note that setting the level to a low (or zero) value will
not necessarily dim the display to nearly off. In other words,
this method is NOT suitable for fade-in/out animation.

	Parameters

	level (int [https://docs.python.org/3/library/functions.html#int]) – Desired contrast level in the range of 0-255.

	
data(data)

	Sends a data byte or sequence of data bytes through to the delegated
serial interface.

	
display(image)

	Takes a PIL.Image [https://pillow.readthedocs.io/en/latest/reference/Image.html#module-PIL.Image] and dumps it to a numbered PNG file.

	
hide()

	Switches the display mode OFF, putting the device in low-power
sleep mode.

	
preprocess(image)

	Provides a preprocessing facility (which may be overridden) whereby the supplied image is
rotated according to the device’s rotate capability. If this method is
overridden, it is important to call the super method.

	Parameters

	image (PIL.Image.Image [https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image]) – An image to pre-process.

	Returns

	A new processed image.

	Return type

	PIL.Image.Image [https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image]

	
show()

	Sets the display mode ON, waking the device out of a prior
low-power sleep mode.

	
to_surface(image, alpha=1.0)

	Converts a PIL.Image [https://pillow.readthedocs.io/en/latest/reference/Image.html#module-PIL.Image] into a pygame.Surface,
transforming it according to the transform and scale
constructor arguments.

	
class luma.emulator.device.gifanim(width=128, height=64, rotate=0, mode='RGB', transform='scale2x', scale=2, filename='luma_anim.gif', duration=0.01, loop=0, max_frames=None, **kwargs)

	Bases: luma.emulator.device.emulator

Pseudo-device that acts like a physical display, except that it collects
the images when the display() method is called, and on exit,
assembles them into an animated GIF image. Supports 24-bit color depth,
albeit with an indexed color palette.

	
capabilities(width, height, rotate, mode='1')

	Assigns attributes such as width, height, size and
bounding_box correctly oriented from the supplied parameters.

	Parameters

	
	width (int [https://docs.python.org/3/library/functions.html#int]) – The device width.

	height (int [https://docs.python.org/3/library/functions.html#int]) – The device height.

	rotate (int [https://docs.python.org/3/library/functions.html#int]) – An integer value of 0 (default), 1, 2 or 3 only, where 0 is
no rotation, 1 is rotate 90° clockwise, 2 is 180° rotation and 3
represents 270° rotation.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The supported color model, one of "1", "RGB" or
"RGBA" only.

	
cleanup()

	Attempt to switch the device off or put into low power mode (this
helps prolong the life of the device), clear the screen and close
resources associated with the underlying serial interface.

If persist is True, the device will not be switched off.

This is a managed function, which is called when the python processs
is being shutdown, so shouldn’t usually need be called directly in
application code.

	
clear()

	Initializes the device memory with an empty (blank) image.

	
command(*cmd)

	Sends a command or sequence of commands through to the delegated
serial interface.

	
contrast(value)

	Switches the display contrast to the desired level, in the range
0-255. Note that setting the level to a low (or zero) value will
not necessarily dim the display to nearly off. In other words,
this method is NOT suitable for fade-in/out animation.

	Parameters

	level (int [https://docs.python.org/3/library/functions.html#int]) – Desired contrast level in the range of 0-255.

	
data(data)

	Sends a data byte or sequence of data bytes through to the delegated
serial interface.

	
display(image)

	Takes an image, scales it according to the nominated transform, and
stores it for later building into an animated GIF.

	
hide()

	Switches the display mode OFF, putting the device in low-power
sleep mode.

	
preprocess(image)

	Provides a preprocessing facility (which may be overridden) whereby the supplied image is
rotated according to the device’s rotate capability. If this method is
overridden, it is important to call the super method.

	Parameters

	image (PIL.Image.Image [https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image]) – An image to pre-process.

	Returns

	A new processed image.

	Return type

	PIL.Image.Image [https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image]

	
show()

	Sets the display mode ON, waking the device out of a prior
low-power sleep mode.

	
to_surface(image, alpha=1.0)

	Converts a PIL.Image [https://pillow.readthedocs.io/en/latest/reference/Image.html#module-PIL.Image] into a pygame.Surface,
transforming it according to the transform and scale
constructor arguments.

	
write_animation()

	

	
class luma.emulator.device.pygame(width=128, height=64, rotate=0, mode='RGB', transform='scale2x', scale=2, frame_rate=60, **kwargs)

	Bases: luma.emulator.device.emulator

Pseudo-device that acts like a physical display, except that it renders
to a displayed window. The frame rate is limited to 60FPS (much faster
than a Raspberry Pi can achieve, but this can be overridden as necessary).
Supports 24-bit color depth.

pygame is used to render the emulated display window, and it’s
event loop is checked to see if the ESC key was pressed or the window
was dismissed: if so sys.exit() [https://docs.python.org/3/library/sys.html#sys.exit] is called.

	
capabilities(width, height, rotate, mode='1')

	Assigns attributes such as width, height, size and
bounding_box correctly oriented from the supplied parameters.

	Parameters

	
	width (int [https://docs.python.org/3/library/functions.html#int]) – The device width.

	height (int [https://docs.python.org/3/library/functions.html#int]) – The device height.

	rotate (int [https://docs.python.org/3/library/functions.html#int]) – An integer value of 0 (default), 1, 2 or 3 only, where 0 is
no rotation, 1 is rotate 90° clockwise, 2 is 180° rotation and 3
represents 270° rotation.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The supported color model, one of "1", "RGB" or
"RGBA" only.

	
cleanup()

	Attempt to switch the device off or put into low power mode (this
helps prolong the life of the device), clear the screen and close
resources associated with the underlying serial interface.

If persist is True, the device will not be switched off.

This is a managed function, which is called when the python processs
is being shutdown, so shouldn’t usually need be called directly in
application code.

	
clear()

	Initializes the device memory with an empty (blank) image.

	
command(*cmd)

	Sends a command or sequence of commands through to the delegated
serial interface.

	
contrast(value)

	Switches the display contrast to the desired level, in the range
0-255. Note that setting the level to a low (or zero) value will
not necessarily dim the display to nearly off. In other words,
this method is NOT suitable for fade-in/out animation.

	Parameters

	level (int [https://docs.python.org/3/library/functions.html#int]) – Desired contrast level in the range of 0-255.

	
data(data)

	Sends a data byte or sequence of data bytes through to the delegated
serial interface.

	
display(image)

	Takes a PIL.Image [https://pillow.readthedocs.io/en/latest/reference/Image.html#module-PIL.Image] and renders it to a pygame display surface.

	
hide()

	Switches the display mode OFF, putting the device in low-power
sleep mode.

	
preprocess(image)

	Provides a preprocessing facility (which may be overridden) whereby the supplied image is
rotated according to the device’s rotate capability. If this method is
overridden, it is important to call the super method.

	Parameters

	image (PIL.Image.Image [https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image]) – An image to pre-process.

	Returns

	A new processed image.

	Return type

	PIL.Image.Image [https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image]

	
show()

	Sets the display mode ON, waking the device out of a prior
low-power sleep mode.

	
to_surface(image, alpha=1.0)

	Converts a PIL.Image [https://pillow.readthedocs.io/en/latest/reference/Image.html#module-PIL.Image] into a pygame.Surface,
transforming it according to the transform and scale
constructor arguments.

	
class luma.emulator.device.asciiart(width=128, height=64, rotate=0, mode='RGB', transform='scale2x', scale=2, **kwargs)

	Bases: luma.emulator.device.emulator

Pseudo-device that acts like a physical display, except that it converts the
image to display into an ASCII-art representation and downscales colors to
match the xterm-256 color scheme. Supports 24-bit color depth.

This device takes hold of the terminal window (using curses), and any output
for sysout and syserr is captured and stored, and is replayed when the
cleanup method is called.

Loosely based on https://github.com/ajalt/pyasciigen/blob/master/asciigen.py

New in version 0.2.0.

	
capabilities(width, height, rotate, mode='1')

	Assigns attributes such as width, height, size and
bounding_box correctly oriented from the supplied parameters.

	Parameters

	
	width (int [https://docs.python.org/3/library/functions.html#int]) – The device width.

	height (int [https://docs.python.org/3/library/functions.html#int]) – The device height.

	rotate (int [https://docs.python.org/3/library/functions.html#int]) – An integer value of 0 (default), 1, 2 or 3 only, where 0 is
no rotation, 1 is rotate 90° clockwise, 2 is 180° rotation and 3
represents 270° rotation.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The supported color model, one of "1", "RGB" or
"RGBA" only.

	
cleanup()

	Attempt to switch the device off or put into low power mode (this
helps prolong the life of the device), clear the screen and close
resources associated with the underlying serial interface.

If persist is True, the device will not be switched off.

This is a managed function, which is called when the python processs
is being shutdown, so shouldn’t usually need be called directly in
application code.

	
clear()

	Initializes the device memory with an empty (blank) image.

	
command(*cmd)

	Sends a command or sequence of commands through to the delegated
serial interface.

	
contrast(value)

	Switches the display contrast to the desired level, in the range
0-255. Note that setting the level to a low (or zero) value will
not necessarily dim the display to nearly off. In other words,
this method is NOT suitable for fade-in/out animation.

	Parameters

	level (int [https://docs.python.org/3/library/functions.html#int]) – Desired contrast level in the range of 0-255.

	
data(data)

	Sends a data byte or sequence of data bytes through to the delegated
serial interface.

	
display(image)

	Takes a PIL.Image [https://pillow.readthedocs.io/en/latest/reference/Image.html#module-PIL.Image] and renders it to the current terminal as
ASCII-art.

	
hide()

	Switches the display mode OFF, putting the device in low-power
sleep mode.

	
preprocess(image)

	Provides a preprocessing facility (which may be overridden) whereby the supplied image is
rotated according to the device’s rotate capability. If this method is
overridden, it is important to call the super method.

	Parameters

	image (PIL.Image.Image [https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image]) – An image to pre-process.

	Returns

	A new processed image.

	Return type

	PIL.Image.Image [https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image]

	
show()

	Sets the display mode ON, waking the device out of a prior
low-power sleep mode.

	
to_surface(image, alpha=1.0)

	Converts a PIL.Image [https://pillow.readthedocs.io/en/latest/reference/Image.html#module-PIL.Image] into a pygame.Surface,
transforming it according to the transform and scale
constructor arguments.

	
class luma.emulator.device.asciiblock(width=128, height=64, rotate=0, mode='RGB', transform='scale2x', scale=2, **kwargs)

	Bases: luma.emulator.device.emulator

Pseudo-device that acts like a physical display, except that it converts
the image pixels to display into colored ASCII half-blocks (ASCII code 220,
‘▄’), where the upper part background is used for one pixel, and the lower
part foreground is used for the pixel on the next row. As most terminal
display characters are in ratio 2:1, the half-block appears square.

Inspired by Command Line Curiosities - Making the Terminal Sing by Hamza Haiken [https://www.youtube.com/watch?v=j5zA5Xi_ph8]

New in version 1.1.0.

	
capabilities(width, height, rotate, mode='1')

	Assigns attributes such as width, height, size and
bounding_box correctly oriented from the supplied parameters.

	Parameters

	
	width (int [https://docs.python.org/3/library/functions.html#int]) – The device width.

	height (int [https://docs.python.org/3/library/functions.html#int]) – The device height.

	rotate (int [https://docs.python.org/3/library/functions.html#int]) – An integer value of 0 (default), 1, 2 or 3 only, where 0 is
no rotation, 1 is rotate 90° clockwise, 2 is 180° rotation and 3
represents 270° rotation.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The supported color model, one of "1", "RGB" or
"RGBA" only.

	
cleanup()

	Attempt to switch the device off or put into low power mode (this
helps prolong the life of the device), clear the screen and close
resources associated with the underlying serial interface.

If persist is True, the device will not be switched off.

This is a managed function, which is called when the python processs
is being shutdown, so shouldn’t usually need be called directly in
application code.

	
clear()

	Initializes the device memory with an empty (blank) image.

	
command(*cmd)

	Sends a command or sequence of commands through to the delegated
serial interface.

	
contrast(value)

	Switches the display contrast to the desired level, in the range
0-255. Note that setting the level to a low (or zero) value will
not necessarily dim the display to nearly off. In other words,
this method is NOT suitable for fade-in/out animation.

	Parameters

	level (int [https://docs.python.org/3/library/functions.html#int]) – Desired contrast level in the range of 0-255.

	
data(data)

	Sends a data byte or sequence of data bytes through to the delegated
serial interface.

	
display(image)

	Takes a PIL.Image [https://pillow.readthedocs.io/en/latest/reference/Image.html#module-PIL.Image] and renders it to the current terminal as
ASCII-blocks.

	
hide()

	Switches the display mode OFF, putting the device in low-power
sleep mode.

	
preprocess(image)

	Provides a preprocessing facility (which may be overridden) whereby the supplied image is
rotated according to the device’s rotate capability. If this method is
overridden, it is important to call the super method.

	Parameters

	image (PIL.Image.Image [https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image]) – An image to pre-process.

	Returns

	A new processed image.

	Return type

	PIL.Image.Image [https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image]

	
show()

	Sets the display mode ON, waking the device out of a prior
low-power sleep mode.

	
to_surface(image, alpha=1.0)

	Converts a PIL.Image [https://pillow.readthedocs.io/en/latest/reference/Image.html#module-PIL.Image] into a pygame.Surface,
transforming it according to the transform and scale
constructor arguments.

luma.emulator.render

	
class luma.emulator.render.transformer(pygame, width, height, scale)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Helper class used to dispatch transformation operations.

	
identity(surface)

	Fast scale operation that does not sample the results

	
led_matrix(surface)

	Transforms the input surface into an LED matrix (1 pixel = 1 LED)

	
none(surface)

	No-op transform - used when scale = 1

	
scale2x(surface)

	Scales using the AdvanceMAME Scale2X algorithm which does a
‘jaggie-less’ scale of bitmap graphics.

	
seven_segment(surface)

	

	
smoothscale(surface)

	Smooth scaling using MMX or SSE extensions if available

 Python Module Index

 l

 		 	

 		
 l	

 	[image: -]
 	
 luma	

 	
 	
 luma.emulator	

 	
 	
 luma.emulator.device	

 	
 	
 luma.emulator.render	

Index

 A
 | C
 | D
 | G
 | H
 | I
 | L
 | N
 | P
 | S
 | T
 | W

A

 	
 	asciiart (class in luma.emulator.device)

 	
 	asciiblock (class in luma.emulator.device)

C

 	
 	capabilities() (luma.emulator.device.asciiart method)

 	(luma.emulator.device.asciiblock method)

 	(luma.emulator.device.capture method)

 	(luma.emulator.device.gifanim method)

 	(luma.emulator.device.pygame method)

 	capture (class in luma.emulator.device)

 	cleanup() (luma.emulator.device.asciiart method)

 	(luma.emulator.device.asciiblock method)

 	(luma.emulator.device.capture method)

 	(luma.emulator.device.gifanim method)

 	(luma.emulator.device.pygame method)

 	clear() (luma.emulator.device.asciiart method)

 	(luma.emulator.device.asciiblock method)

 	(luma.emulator.device.capture method)

 	(luma.emulator.device.gifanim method)

 	(luma.emulator.device.pygame method)

 	
 	command() (luma.emulator.device.asciiart method)

 	(luma.emulator.device.asciiblock method)

 	(luma.emulator.device.capture method)

 	(luma.emulator.device.gifanim method)

 	(luma.emulator.device.pygame method)

 	contrast() (luma.emulator.device.asciiart method)

 	(luma.emulator.device.asciiblock method)

 	(luma.emulator.device.capture method)

 	(luma.emulator.device.gifanim method)

 	(luma.emulator.device.pygame method)

D

 	
 	data() (luma.emulator.device.asciiart method)

 	(luma.emulator.device.asciiblock method)

 	(luma.emulator.device.capture method)

 	(luma.emulator.device.gifanim method)

 	(luma.emulator.device.pygame method)

 	
 	display() (luma.emulator.device.asciiart method)

 	(luma.emulator.device.asciiblock method)

 	(luma.emulator.device.capture method)

 	(luma.emulator.device.gifanim method)

 	(luma.emulator.device.pygame method)

G

 	
 	gifanim (class in luma.emulator.device)

H

 	
 	hide() (luma.emulator.device.asciiart method)

 	(luma.emulator.device.asciiblock method)

 	(luma.emulator.device.capture method)

 	(luma.emulator.device.gifanim method)

 	(luma.emulator.device.pygame method)

I

 	
 	identity() (luma.emulator.render.transformer method)

L

 	
 	led_matrix() (luma.emulator.render.transformer method)

 	luma.emulator (module)

 	
 	luma.emulator.device (module)

 	luma.emulator.render (module)

N

 	
 	none() (luma.emulator.render.transformer method)

P

 	
 	preprocess() (luma.emulator.device.asciiart method)

 	(luma.emulator.device.asciiblock method)

 	(luma.emulator.device.capture method)

 	(luma.emulator.device.gifanim method)

 	(luma.emulator.device.pygame method)

 	
 	pygame (class in luma.emulator.device)

S

 	
 	scale2x() (luma.emulator.render.transformer method)

 	seven_segment() (luma.emulator.render.transformer method)

 	show() (luma.emulator.device.asciiart method)

 	(luma.emulator.device.asciiblock method)

 	(luma.emulator.device.capture method)

 	(luma.emulator.device.gifanim method)

 	(luma.emulator.device.pygame method)

 	
 	smoothscale() (luma.emulator.render.transformer method)

T

 	
 	to_surface() (luma.emulator.device.asciiart method)

 	(luma.emulator.device.asciiblock method)

 	(luma.emulator.device.capture method)

 	(luma.emulator.device.gifanim method)

 	(luma.emulator.device.pygame method)

 	
 	transformer (class in luma.emulator.render)

W

 	
 	write_animation() (luma.emulator.device.gifanim method)

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_images/inheritance-15f14ddd3059ddb4b7cf6e22c157976cfbb64222.png
[Tuma.core. device dummy |
P
Tuma.corevirtal sevensegmert -~ —
T e doice dice | b coedeiceprall dmice | /[luma itordeice scitick
] = e

— Torma core vitual istory [[Toms emolstrdevice smuator | ———of T smstor device copure

o -
= Tors e ATt | o o o ATt \ e e

_static/file.png

nav.xhtml

 Table of Contents

 		
 Luma.Emulator

 		
 Introduction

 		
 Installation

 		
 System packages

 		
 Installing from PyPi

 		
 API Documentation

 		
 luma.emulator.device

 		
 luma.emulator.render

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

